Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Advances in Mechanical Engineering ; 14(8), 2022.
Article in English | Scopus | ID: covidwho-1993294

ABSTRACT

The surface acoustic waves (SAW) propagate inside the microdroplets resulting in kinetic and thermal impacts. The kinetic drives fluid particles inside the droplet while thermal impact increases the liquid’s temperature. This paper provides a comprehensive review of the research investigations related to internal kinetics and heating inside the microdroplet caused by the acoustic waves. The main factors that affect the kinetics and convection heat transfer are the piezoelectric materials, shape of the interdigital transducer (IDT) and mode of acoustic waves. Internal streaming (kinetic) leads to particle mixing, particle manipulation, cell sorting, cell patterning, cell separation, measuring the concentration of immunoglobulin and so forth. The effect of changing the mode of waves and the shape of IDT on the relevant applications are presented. Internal convection heat transfer is important where heating of the liquid is essential for many applications such as monitoring blood coagulation in the human plasma and an acoustic tweezer for particle trapping. Experimental methods developed by researchers to realise uniform temperature with constant heating and cooling cycles are also discussed. Such methods are widely used in the polymerase chain reaction (PCR) to detect COVID-19 infection. The heating of the droplet can be efficiently controlled by changing the input power and by varying the duty factor. © The Author(s) 2022.

2.
Diagnostics (Basel) ; 11(10)2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1463576

ABSTRACT

Since the Coronavirus disease 2019 (COVID-19) pandemic outbreak, many methods have been used to detect antigens or antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including viral culture, nucleic acid test, and immunoassay. The shear-horizontal surface acoustic wave (SH-SAW) biosensor is a novel pathogen detection platform with the advantages of high sensitivity and short detection time. The objective of this study is to develop a SH-SAW biosensor to detect the anti-SARS-CoV-2 nucleocapsid antibody. The rabbit sera collected from rabbits on different days after SARS-CoV-2 N protein injection were evaluated by SH-SAW biosensor and enzyme-linked immunosorbent assay (ELISA). The results showed that the SH-SAW biosensor achieved a high correlation coefficient (R = 0.9997) with different concentrations (34.375-1100 ng/mL) of the "spike-in" anti-N protein antibodies. Compared to ELISA, the SH-SAW biosensor has better sensitivity and can detect anti-N protein IgG signals earlier than ELISA on day 6 (p < 0.05). Overall, in this study, we demonstrated that the SH-SAW biosensor is a promising platform for rapid in vitro diagnostic (IVD) testing, especially for antigen or antibody testing.

SELECTION OF CITATIONS
SEARCH DETAIL